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J. Phys. A: Math. Gen. 15 (1982) Llll-L114. Printed in Great Britain 

LE'ITER TO THE EDlTOR 

Free bosons in a scaled external potential 

J Messert and A Verbeure 
Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 

Received 3 December 1981 

Abstract. We introduce a suitable set of volume-dependent coherent states and use 
correlation inequalities to treat the condensation problem of bosons in an external field. 

It is well known (Hohenberg 1967) that free bosons in one and two dimensions do 
not exhibit Bose condensation. However, recently van den Berg (1980) and van den 
Berg and Lewis (1981) (see also PulB 1981) proved the existence of Bose condensation 
in one (and more) dimension(s) for a system of non-interacting bosons moving in an 
external field given by a potential of the form V(x/L)=clx/LI* where c and cy are 
positive numbers, and L is the length of the box. 

As in any quantum mechanical problem, the fundamental observables are position 
x and momentum p, satisfying [x, p] = ih. The main point of this Letter is our remark 
that free Bose systems in an external field, scaled as above, are described by the 
fundamental observables xL = x/L and p ,  hence satisfying [xL, p ]  = ih/L. The thermo- 
dynamic limit, when L tends to infinity, formally reduces to the classical limit where 
A tends to zero. As is known (Hepp 1974), the classical limit is made precise by 
describing the particles in coherent states. Our main contribution consists in stating 
the suitable form of the coherent states appropriate for the problem and applying 
correlation inequalities as a method of solution. 

We consider the following one-dimensional, length parameter dependent model 
of identical bosons on the Fock space XF. The dynamical system is specified by the 
automorphism groups af given by 

afa*(#)  = a*(eifhL#), 4 E Y(R), (1) 
acting on the Fock creation and annihilation operators a* and a, where hL is the 
one-particle Hamiltonian 

(2) 
on the Schwartz space Y ( R ) .  The external potential V is a positive continuous function, 
with global minima zero, and further specified such that Vf E Y(R) for every f~ 9(R) 
and hL is essentially self-adjoint and exp(-PhL) (P BO) is trace-class on 2Z2(R) (see 
Davies 1973). 

We denote by wL the Gibbs state with the constraint oL(N) = 2Lp, by which the 
local chemical potential p L  is defined, and where p is the fixed density; N is the 
number operator. 

hr. = -5 d2/dX2 + V(X/L) - p L  

t Present address: Sektion Physik, Theoretische Physik, Universitat Miinchen, Theresienstrasse 37, D-8000 
Munchen 2, Federal Republic of Germany. 

0305-4470/82/030111+ 04$02.00 @ 1982 The Institute of Physics L l l l  



L112 Letter to the Editor 

We show the existence of Bose condensation in one dimension for a general class 
of potentials, including the choice of van den Berg and Lewis (1981) for a: > $. by 
investigating the two-point function using correlation inequalities. 

We define a family of coherent states as follows: for each k, q E R 

( 3 )  
where 0 < E < 1 and I/fkq)12 = 1. To be precise, we have to modify the function in a 
sufficiently small neighbourhood of the point x = Lq in order that f:,, E Y(R) and 

tkx  1 - E  1/2  fk,(x> = e  (ZL exp(-$Lil-'lx - ~ q l ) ,  x E R, 

( f k q ,  hLfkq)=ik2-pL+ V(q)+o( l IL) .  (4) 

Herebyo(l/L) tends tozeroifL tends toinfinity. Wecanreplaceo(!/Lj byL-'o(l/L) 
for E < a if V is Holder continuous of some order LY > 0. 

For the observable 

Nkq = a*(f;,,)a(f:,) ( 5 )  

we give lower and upper bounds to wL(N;,,)  by applying correlation inequalities. For 
each k, q E R with k # 0, and for p being the inverse temperature, we obtain 

OL(N;,,)2Uexp(P[~k2-pL+ V(q)+o(l/L)Il- ID-' (6)  

by applying the correlation inequality (Fannes and Verbeure 1977) to a(fk.q)r 

w ( [ a  *(fIS;, ), a U?,, )I) In[w (Nkq I /  1 + w ( N t , ,  11 pm([a  (fk, ), a *(hLfkL,,, )I), (7) 

To get an upper bound we restrict the potential to be Holder continuous of order 
and equation (4). It follows from (7) that pL s 0. 

a >;. In this case for each k, q E R, k f 0, 

W d N i k ) ~ U e x p P ( & 2 +  V ( q 1 - p ~  -L-'[lo(l/L)I + I o ( l / L ) l ~ ~ ( ~ ~ , , ) - " ~ l } -  1D-l (8) 
if E < (2a - 1)/(2a + 1). This follows from the correlation inequality (Fannes and 
Verbeure 1977) 

(9) -pwL(a*(f:,,)a(hLf;,,)) 2 w ( N k q )  ln[w(Nk,)/1 + w ( ~ k , ) I  

wL(a*(f;,,)a(g;,q)) = L-"o(l/L)wLcN:,q Y, (10) 

g;&) = (V(X/L)- V(q)) f ; , , (x) .  (11) 

and the estimate 

where 

To prove (10) we apply the Cauchy-Schwarz inequality twice after expanding gk,, 
into an orthonormal basis of Z2(R) and using the relation o ~ ( N ) = 2 L p .  This yields 

lWL(a*(f:,)a(gi,,))l2 2~Pllg:,,ll24N:,, ). (12) 
Finally, to find a bound for 11gi,,)12 we decompose the integration into an = EoL'+'-' 
( E ~  > 0,S > 0)-neighbourhood and its complement, llgk,,f = GI + Gz,  where S can be 
chosen sufficiently small such that 

(13) 

The contribution G2 from the complement decays exponentially for large L, because 
V ~ E  Y(R) for any f~ Y(R). Other terms on the left-hand side of (9) coming from the 
modification of (3) at x =Lq are again of the type L - " ( o ( ~ / L ) + o ( ~ / L ) o L ( N ~ , ~ ) ~ ' ~ ~ .  

2 Z a ( S + € - l ) =  2 G I - E ~ L  l/L). 
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Next we study the off-diagonal part of the two-point function. By applying the 

(14) 

Bogoliubov inequality 

b~(L-4, BI)12sbL(A*A +AA*)~L([B*, [HL, Bl1) 

with A = ~ * ( f i , ~ ) u ( f i v , ~ ~ )  and B = ~ * ( f k , ~ ) u ( f k , ~ )  we obtain 

lWL(Nk,s)(fkW, fL7) - ~ L < ~ * ( f ~ , , ) a ( f ~ , , q , ) ) 1 2  

s $/3[[4WL(Nkq ) W L ( N L f )  + W L ( N k , q )  

+ W L ( N i , , q '  ) m J L ( N k , q  )(fkq, h L f i , q )  

- WL(U *(hLfi& (fi,,), - W L ( U  *<fi,q)a (hLfi4.q))). (15) 

The term in braces on the right-hand side is bounded by L - " o ( l / L )  uniformly in k 
and 4 outside k = 0. From (8), o ~ ( N ~ , ~ )  is bounded above by ($k2 + V(q)  - p)-l for 
large k. Repeating the estimations which led to (8)  by using now ~ ( h ~ f : , ~ -  
($k2 + V ( 4 )  - p -EL )fk,,) instead of, U (fk,,) in the correlation inequality (9), and 
substituting the resulting bound in (9), we can improve the upper bound of w ~ ( N : , ~ )  
to become ($k2+ V(q)-p)-'  for large k. Therefore the square root of the right-hand 
side of (15) is integrable with respect to k at infinity, and to 4 if V grows fast 
enough for large 141. This condition on V might be eliminated after an infinite 
repetition of the above iteration. Expanding the orthonormal basis by which N is 
described into our coherent states and using the completeness relation 

1 -2s 

(LBO, f ~ 9 ~ ( R ) ) ,  we obtain 

1 
-uL(N)  = I %d4 ~ ~ ( N j t ; ~ )  + RL, 2L 2 21r 

(17) 

where according to ( 1 5 )  and the remarks made thereafter RL vanishes in the limit 
L + 00. This implies, for instance for fixed p CO, with (6) and (8), 

' I  dk 
1 

lim -uL(N)  =- - dq{exp[/3(ik2+ V(4)  - p ) ] -  1}-l =:ps(p)  (18) 
L-Dm 2L 2 21r 

uniformly in p. Since p s ( p )  is strictly monotonic in p, it follows from standard 
arguments (Davies 1973, Landau and Wilde 1979) that p L  converges to some p, 
which is less than zero if p <ps(0) ,  and equal to zero if p 3 pa(0). 

In this one-dimensional Bose gas, condensation occurs due to the presence of an 
external potential which allows ps(0) < 00. If the potential takes its absolute minima 
only at a finite number n of positions, then the density of the condensate is 

where the integrations are on e-neighbourhoods of the positions of the absolute 
minima of V or of k = 0. If we expand the total density p = (1/2L)oL(N) again into 
the coherent states f;,, and decompose the integrations into the neighbourhoods and 
their complements, we observe that the mixed expressions tend to zero after taking 
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the two limits as in (19). With the technique by which (17) was han&led we arrive at 
the bound 

P - P o ~ P s l O ) ,  (20) 
which implies that the condensate density po becomes strictly poeitive for sufficiently 
large p, if the potential V is chosen such that ~ ~ ( 0 )  COO. It is clear from (19) that the 
external potential forces the bosons to condensate into the absolute minima with 
vanishing momenta. However, with our method we are unable to calculate the relative 
occupation over the minima. 
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